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Abstract. We discuss the loop group O(S', C) of mappings of the circle S' into a compact 
Lie group G. We show that there exists a realization of projective unitary representation 
of 0 in the Hilbert space of functionals of holomorphic fields with values in GC (the 
complexification of G). We show that this representation belongs to the discrete series of 
positive energy representations of 0. We discuss the quantum field theory of holomorphic 
fields. 

1.~ Introduction 

Irreducible representations of the loop group and its central extensions have been 
classified by Kac [I] (see also the review article by Frenkel [Z]). A discrete series of 
unitary positive energy representations (see [3]) has been related to a field-theoretic 
model of Wess, Zumino and Witten (wzw) [4], which is a realization of the Sugawara 
current algebra [5] studied in detail by Goddard and Olive [6]. Some representations 
of the loop algebra have been studied earlier by Gelfand and his collaborators [7,8] 
(see also references to their earlier papers) and Albeverio and Hoegh-Krohn [9 ] .  In 
[A a representation of the loop group has been realized in the bosonic Fock space. In 
[SI, Gelfand et a1 suggest a representation of the central extension of the loop group in 
the Fock space assuming that there exists a 2-cocycle. Mickelsson [lo] discussed 2- 
cocycles resulting from the wzw model and the corresponding representations of the 
Kac-Moody algebra. A realization of the unitary representations of the Kac-Moody 
algebra in the bosonic Fock space of holomorphic scalar free fields has been discussed 
by Wakimoto [ll] as well as by physicists (see [12-141 and references quoted therein). 

In this paper we would like to discuss an approach to the loop group O(S', G) 
which resembles the construction of the regular representation of a finite-dimensional 
Lie group G. In such a case the representation is constructed by means of the right 
translationf(g)+>(g, h)f(gh) (here p is a certain multiplier),fcL'(dv), where Y is a 
quasi-invariant measure on G. Such a construction would be interesting in an infinite 
number of dimensions from the point of view of quantum field theory. Examples of a 
unitary and covariant transformation of quantum fields under an infinite-dimensional 
group are rather sparse. However, for representation theory we need to work with 
fields holomorphically continued from S' to the disc D. We discuss a measure Y 
defined on holomorphic fields. We define a unitary representation of %(S1, G) in 
L'(dv), which belongs to the discrete series of positive energy representations. This 
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represenation could be considered as a particular Hilbert space realization of the 
representations discussed by Gelfand et aZ[8] and Mickelsson [lo]. We discuss in some 
detail the field-theoretic model of fields with values in GC (the complexification of G). 
The case of a complex solvable group is explicitly soluble. We discuss the conformal 
invariance of the model. 

2. Holomorphic free fields 

We consider first the free field defined on the circle SI, 

It can be continued analytically to the disk D = {z E IC: I z I G l}, 

The quantum free field 'at time zero' can be considered as a set of independent 
complex Gaussian random variables {an} with the covariance 

(2k+ m - I)! 
dv&a, = 6., = L I C k  (4 - ' n!(2k-  l)! 

(k>O) defining the Gaussian measure vu. We can write vo as a product measure, 

A formal expression for vo can be written in the form 
I ,  

where p could denote either a point of S or of D and the measurep, is determined by 
ck in equation (2.4). The two-point correlation function resulting from the covariance 
(2.3) is 

By means of the Cayley transformation we can map the disk D into the upper half- 
plane oil (see [15]). In such a case the boundary S' is mapped onto the real line R. 
After this transformation the field $ for k=l is the positive-energy part of the 
time-zero massless canonical free field. 

3. Reproducing kernels and group representations 

In the representation theory of groups it is sometimes useful to discuss positive 
definite kernels instead of the Hilbert space of the representation (see [16]). Let us 
recall some definitions 1171. 
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Let Q be a set. We say that a function K on Q X Q is positive definite if for arbitrary 
A € C  

There exists a standard method in algebra to construct a linear space 2 from any set 
Q. 2 consists of 'formal linear combinations of elements of Q (in [17] a less abstract 
construction is given). So we can define a map 

u : Q - 2 .  ( 3 4  

N ={x E Q: K(x,  x) = 0) (3.3) 

Let us define a subset 

and the corresponding linear subspace Nsc2 .  Then, the positive definite kernel 
(equation (3.1)) supplies 2 / N y  with the scalar product 

(44 uCv))=K(x,y). (3.4) 
Now, 2/N2 equipped with the scaar product (3.4) is the Hilbert space 3. 

Next, let Q be a measure space, i.e. a u-algebra Q of measureable sets is chosen 
and there exists a (non-negative) measure Y on &. We say that K is a reproducing 
kernel if 

dv(x)K(y, x)K(x ,  z )  = K ( y ,  I). (3.5) ~I 
Consider an example. Let %(M,C") be the space of functions defined on M with 

values in C a n d  p a non-negative measure on M .  Then. the map (3.2) is just an 
identity. We define a positive definite kernel on %(M, C") by 

YC; is a reproducing kernel. Equation (3.6) is in fact a rigorous definition of the 
Gaussian measure v0 (equation (2.4)) (when M = D  andp=pu,). 

We can construct new positive definite kernels from a known one. Let K be a 
positive definite kernel on M and 

u: Q - t M  

aninvertiblemap. Denotingx,=u-l(m,) andx2=o-'(m2) wedefineakernelK,on Q ,  

K&,, XZ) =KMx1),+2)). (3.7) 
 it is an easy check that 'KO is positive definite: 

If K is the reproducing kernel with the reproducing measure Y in equation (3.5) then 
KO is the reproducing kernel with the reproducing measure v,=vou, where we define ~ 

. 

YdA) = Y ( 4 A ) )  (3.8) 
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for any set A being a o-'-image of a measureable set. In fact, we have 

dvAx)K,(x17 4%(x, 4 

We assume that a transformation group G is defined on Q (we denote its action by 
xg).  We say that the kernel K is projectively invariant if for each g e  G 

@g, yg) =TE4Ng,l)f% Y). (3.9) 
If the kernel is projectively invariant then there exists in X a unitary (in general 
projective) representation U(G) of the group G defined by 

U,u(x) =A(g,x)-'u(xg). (3.10) 

It can be shown (and calculated from A) that there exists a two-cocycle y( IyI = 1) 
Note that U,, = U, if U@,) - u(g2) E Nz and Akl ,  x) = A(g2, n). 

(3.11) 
such that 

~kl )U(gz)  =Y(gbgz) UklL?2). 
The cocycle condition resulting from associativity reads 

(3.12) 

4. Fields with values in a group 
We now apply the method of construction of reproduc g kernels and reproducing 
measures expressed by equations (3.7) and (3.8). We begin with the reproducing 
kernel XI (equation (3.6) with M =  D). Let us consider a complex vector bundle 
V(D, V.) over D. Let X(D, V.) be the vector space of local holomorphic sections of 
V(D, VJ. If qbisX(UI, VJ, then we d e h e  

The reproducing measure is defined rigorously by the reproducing property (3.5) and 
formally by 

dvo(@)-Jj d V ( 4  exp[ - : s , d ~ z m , 3 @ ~ ( z ) ] .  ( 4 4  

This is the Gaussian measure of independent free fields V with the two-point function 
defined in equation (2.6) with k= 1. 

According to equation (3.7) iffis a (locally) invertible map of aset 9 (at this stage 
we have some freedom in the choice off and T) 

f: 9+X(D, V,) (4.3) 
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expressed in coordinates as 

P ( $ ) ( W ) = K - I n a @ ( W )  

then 

859 

(4.4) 

(4.5) 

is the positive definite reproducing kernel on 9. 
Let V,= 'f, G = Se now be the Lie algebra of a compact semisimple Lie group G. 

Let GC be its complexification and Se' the complexification of Se. Let U(D, Gc) (the 
set of maps from D into Gc) be the set S in equation (4.3), we consider the map 

f:V(D,G")+X(D,Se') (4.6) 

fk) =g-' ag. (4.7) 

defined by 

The inverse mapf-' is defined as the solution of the equation (an ordinary differential 
equation in the complex domain D) 

(4.8) 

mapping 0 of Sec into the unit element of GC (here Q EX(D, d') are n independent 
holomorphic free fields (2.6).wrresponding to k =  1). 

From equation (4.5) we get a positive definite kernel on U@, G'), 

(4.9) 1 TL"(gl,gd =exp ; dzz((g;lW',g;i agJ ["1. 
where (,) is the Killing form on Se (positive definite). 

maps D+ G .  For the multiplier A (equation (3.9)) we get 
The kernel SC' is projectively invariant under the group U(D, G) of real analytic 

(4.10) 

where he($@, G) andge%(D,G'). 
Clearly, h e % @ ,  G) does not map U(D, GC) onto itself. The formalism of section 

3 still applies. We need to extend the definition of the kernel X' (see equation (4.9)) 
to the orbit ofU(D, GY under the action of %(D, G) denoted byUc(D, G). The kernel 
(4.9) remains positively definite on U@, G). Th~en. equation (3.10) defines a unitary 
 projective^ representation of the group V(D, G). A simple calculation gives the 
formula for the 2-cocycle y (equation (3.11)), 

y(hl ,  h,)=exp[E 1 dzz(((h;' ah,)*, ah&;') - ((ah&')+, h;' ah,)) ] . (4.11) 
D 

We shall show that formula (3.10) defined by the kernel (4.9) defines a represen- 
tation of the central extension of the loop algebra. In order to see this let us consider 
infinitesimal transformations h = exp(sG), 

ahh-'=d$. (4.12) 
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Hence, neglecting higher orders in E ,  

A(h,g)=exp[:/ D d2z8(b+g'ag)] 

because g is a holomorphic function, i.e. A@, g) depends only on the values of h and g 
on the boundary aD = SI. If lj = 0 on aD then h(h ,  g) = 1 (at least for infinitesimal 
transformations h). Moreover, if lj = 0 on aD then u(gh) - o(g) EN* In order to prove 
this let us note that 

(4.13) 

Inserting equation (4.13) into equation (4.9) we can see that because of holomorphi- 
city of g only the value of on the boundary of D contributes t o p .  Hence, if 6 = 0 on 
aD then u ( g h ) - u ( g ) c N x  (see the definition below equation (3.3)). As a conse- 
quence, if h = l  on aD then from equation (3.10) &=1 (at least for infinitesimal 
transformations). Now, the loop group %(SI, G) has a realization (see [lo]) as a 
quotient group O(D, G)/%l(D, C),  where denotes the set of maps, which are 1 on 
the boundary XD. We have just shown that the subgroup O,(D,~G) has a trivial 
representation of its algebra in the Hilbert space determined by the kernel (4.9). 
Hence, formula (3.10) defines a representation of the central extension of the loop 
algebra determined by the 2-cocycle y (equation (4.11)). The 2-cocycle y is related to 
the wzw action. When we extend the-field and the integration domain to the whole 
compactified plane @, then this extended 2-cocycle yc can be expressed as 

y&,, h2) = exp[ W(h, h,) - W(hJ - W(h3 -W(hlhz)+ W@J+ iT(Q (4.14) 

where W is the wzw action 14,191. The equality of equations (4.11) and (4.14) follows 
from the Polyakov-Wiegmann formula [19] fpr W(hlh2). The imaginary part of W(h) 
in equation (4.14) is equal to 

(ghl-1 agh=g-l ag+E[g-l ag, h] + E ab. 

w =E / (h-' dh)' 
X 8  

where h is a smooth extension of h to a ball B with Cas  its boundary. It is known that 
w is an integer if K=k/lZ*', where k is an integer and 6 is the length of the maximal 
root of Se. Only a discrete set of values for K is allowed. This follows from the 
requirement of y to be single valued. The 2-cocycle y (4.11) as a central extension of 
the loop group has been discussed in [lo] and [U]. 

Consider now the reproducing measure Y. According to formula (3.8) this measure 
is equal to v=v,=v,,~f. where the map f is defined in equation (4.7) and vo is the 
Gaussian measure (2.6). Formula (3.8) defining vj as a transformation of vo is a 
mathematically precise definition of the reproducing measure Y .  However, in order to 
relate it to the Lagrangian formalism we derive its formal expression. We have from 
equations (4.2) and (4.7) 
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The Maurer-Cartan form can be expanded into a basis {re} of SP 

g,-' ag=M:raaqQ. (4.16). 
From equation (4.8) we get for the Jacobian in equation (4.15) 

. 
MMY) &S(z-~!)+afiMZ(v) ~ $ J ~ ( z ) ~ ( z - z ' ) .  (4.17) V(z) 

Ji=sws(z')= 
Let 

LFMi=G; 

be the inverse of M .  We transform the operator J (equation'(4.17)) into an operator 
$: TG+TG, 

(4.18) 

T$=M; 8, Lz- MZ 8, Lz=fib LzMt M; (4.19) 

where in the last step in equation (4.19) the fact that {LO} form the basis of the Lie 
algebra (with structure constantsf:b) of left invariant vector fields has been used. The 
transformation J-.$ has the Jacobian (det L)-'. We have 

dq(det L)-'=dg(q) 

where dg is the Haar measure on G. Let ?,7.b=(tn, tb) be the Killing tensor. Define 

(4.20) .a hac=MaMO?,7.b. 

Then, the measure vi (equation (4.15)) can be expressed in the form 

(4.21) 

where xis  a Dirac (anticommuting) spinor field and 

X(yt,X)=h,z(W) aW'aw.+li,~(l-yj)r"(6,"a,-T~~a,Wp)xa. (4.22) 

The determinant in equation (4.21) can be computed [20,21]. It is equal to its 
holomorphic anomaly, 

(4.23) 

The effective action resulting from equations (4.21) and (4.23) leads to non-compact 
wzw Lagrangians discussed in [22-251, but now with holomorphic dields. The 
bosonic part of the Lagrangian (4.22) is equal to the area of the surface in G" resulting 
as thef-image (4.7) of D. Modelsof this type could have applications in string theory. 

The group-theoretical content of the holomorphic field theory can be reduced to 
that of the reproducing kernel (4.9). The Hilbert space % defined by equation (3.4) 
has a realization as Lz(dvf). Let us call the measure vf quasi-invariant under right 
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group translations k E O(D, G) if for any F E  Lz(dv,) 

(4.24) 

Then, we can prove the formula (4.24) using the reproducing property (3.5) in the 
form 

dvf(gh)YCg(g,k, gh)X'(gk, g2h) =YCS(g,k, g2k). (4.25) 

Applying the transformation property (3.9) we see that equation (4.24) holds true 
when applied to functionals of the form of the exponentials (4.9) (we expect that such 
functionals form a dense set in L2(dvf)). 

From equations (4.24) and (3.10) it follows that the representation of O(D, G) 
defined in Lz(dvf) by 

(UhF)(g)=Ak,h)-li%w (4.26) 

(where heO(D, G)) on fimctionals Fof holomorphic Gc-yalued fields (g~%3(D, Gc)) 
is unitary and equivalent to the representation (3.10) derived from the positive 
definite kernel X' (equation (4.9)). 

The pointwise multiplication gh in equation (4.26) when expressed in terms of q4 
(equation (4.8)) takes the form 

a@-th-'a@k+h-'ah. (4.27) 

Formula (4.27) relates the representation (4.26) to the central extension of the loop 
algebra suggested at the end of the paper of Gelfand et a1 [8] (although these authors 
do not consider holomorphic fields at all). 

i 

5. A soluble model 

Equations (4.8) can easily be solved when G is a solvable group. We are interested in 
this section in conformal invariance of the solution. For a discussion of the conformal 
invariance it is convenient to map the disk D onto the upper half-plane W by means of 
the Cayley transformation 

z= (1 +iw)(l -iw)-'. (5.1) 
The correlation function (2.6) transforms into 

-2k 

dv,($) aq4(wr)'= :[ -; (w' - G)] (5.2) 

where w, w' E W. We consider here the simplest case of equation (4.8), a solvable 2 x 2 
unimodular matrix. Then, 

where 
g = N A  

q3 is a matrix, 
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whose entries are independent free fields with the two-point function defined in 
equation (5.2) with k=~l. Equations (48) read 

~. 
aq =<U a&, 
az=<uexp( -2q) (5.3) 

where we denoted U= lk. The general solution of equations (5.3) is 

It depends on the parameters a and p. 
The measure v, (equation (4.21)) after the calculation of the determinant (4.23) is 

dv= d Z  d q  exp [ - 1 d2w dly w- '1 d2w exp(2q +@) a 2  a 2  
H 32 n -1 

which is a holomorphic version of a measure discussed in [22]. We consider the field 

@dw) = exp(*(w) + Y(w))z(w) (5.5) 
as a candidate for a conformal covariant field. 

Let us first compute the two-point function of q. From equation (5.2) (k= 1) we . 

The two-point function Qe is conformally invariant with a scale dimension equal to 
zero if a undergoes a-conformal transformation together with w. In such a case the 
parameter a in @,, also undergoes a conformal transformation. Another way out of 
this well known conformal anomaly [26] is to restrict the field q to test functionsfsuch 
that J d2wf(w, G) =O. In such a case only the first term on the right-hand side of 
equation (5.6) is relevant. Let us introduce 

Q(wl, w2) = @ijqY( w& = - U  h(w* - bol) (5.7) 
as a definition of Y. Y can be expressed by ly as Y(w) =ly(w)  +i?y(a). We express ly 
in formula (5.4) by 'Y, and dividing by exp[ily(a) -$(a)] we modify definition (5.5), 

~ @ ( W ) = ~ X P [ - P ~ ~ ~ Y ( ~ ) ) I  expp(w) +V" exp[-z~(C)] a@&) d5. (5.8) 

The two-point function of @ is 



We can see from equations (5.9) and (5.10) that if we formally let P + m ,  then the 
correlation functions are scale covariant with the scaling dimension d=-o  (the 
negative sign means that the two-point function grows with the distance as I w1 - w2p).  
If /3= m , then the integral (5.9) is divergent. We could define the integral (5.9) by an 
analytic continuation in U. If U is negative then the integral (5.9) is convergent even if 
P= m . A simple Gaussian functional integral gives a formula for n-point correlation 
functions. If P= m the correlation functions are formally scale covariant with the 
scaling dimension d = - U. 

The correlation functions which we get this way resemble the Feigin-Fuchs 
representation of conformal field theory [U]. They appear to be related to the 
correlation functions of non-compact wzw models discussed in [22-253 (if we express 
the plane integrals there by line integrals according to [28]). The negative dimension 
may be a result of non-compactness of the solvable model. 
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