A realization of the Kac-Moody algebra on holomorphic fields

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 27855
(http://iopscience.iop.org/0305-4470/27/3/026)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 23:02

Please note that terms and conditions apply.

A realization of the Kac-Moody algebra on holomorphic fields

Z Haba
Institute of Theoretical Physics, University, of Wroclaw, Wroclaw, Poland

Received 27 April 1993, in final form 27 September 1993

Abstract

We discuss the loop group $\varphi\left(S^{1}, G\right)$ of mappings of the circle S^{1} into a compact Lie group G. We show that there exists a realization of projective unitary representation of \mathscr{G} in the Hilbert space of functionals of holomorphic fields with values in G^{C} (the complexification of G). We show that this representation belongs to the discrete series of positive energy representations of \mathscr{G}. We discuss the quantum field theory of holomorphic fields.

1. Introduction

Irreducible representations of the loop group and its central extensions have been classified by Kac [1] (see also the review article by Frenkel [2]). A discrete series of unitary positive energy representations (see [3]) has been related to a field-theoretic model of Wess, Zumino and Witten (wzw) [4], which is a realization of the Sugawara current algebra [5] studied in detail by Goddard and Olive [6]. Some representations of the loop algebra have been studied earlier by Gelfand and his collaborators $[7,8]$ (see also references to their earlier papers) and Albeverio and Hoegh-Krohn [9]. In [7] a representation of the loop group has been realized in the bosonic Fock space. In [8], Gelfand et al suggest a representation of the central extension of the loop group in the Fock space assuming that there exists a 2-cocycle. Mickelsson [10] discussed 2cocycles resulting from the wzw model and the corresponding representations of the Kac-Moody algebra. A realization of the unitary representations of the Kac-Moody algebra in the bosonic Fock space of holomorphic scalar free fields has been discussed by Wakimoto [11] as well as by physicists (see [12-14] and references quoted therein).

In this paper we would like to discuss an approach to the loop group $\mathscr{G}\left(S^{1}, G\right)$ which resembles the construction of the regular representation of a finite-dimensional Lie group G. In such a case the representation is constructed by means of the right translation $f(g) \rightarrow \rho(g, h) f(g h)$ (here ρ is a certain multiplier), $f \in L^{2}(\mathrm{~d} v)$, where v is a quasi-invariant measure on G. Such a construction would be interesting in an infinite number of dimensions from the point of view of quantum field theory. Examples of a unitary and covariant transformation of quantum fields under an infinite-dimensional group are rather sparse. However, for representation theory we need to work with fields holomorphically continued from S^{1} to the disc \mathbb{D}. We discuss a measure v defined on holomorphic fields. We define a unitary representation of $\mathscr{G}\left(S^{1}, G\right)$ in $L^{2}(\mathrm{~d} v)$, which belongs to the discrete series of positive energy representations. This
represenation could be considered as a particular Hilbert space realization of the representations discussed by Gelfand et al [8] and Mickelsson [10]. We discuss in some detail the field-theoretic model of fields with values in G^{C} (the complexification of G). The case of a complex solvable group is explicitly soluble. We discuss the conformal invariance of the model.

2. Holomorphic free fields

We consider first the free field defined on the circle S^{1},

$$
\begin{equation*}
\phi(\theta)=\sum_{n=1}^{\infty} a_{n} \exp (\mathrm{i} n \theta) \tag{2.1}
\end{equation*}
$$

It can be continued analytically to the disk $\mathbb{D}=\{z \in \mathbb{C}:|z| \leqslant 1\}$,

$$
\begin{equation*}
\phi(z)=\sum_{n=1}^{\infty} a_{n} z^{n} . \tag{2.2}
\end{equation*}
$$

The quantum free field 'at time zero' can be considered as a set of independent complex Gaussian random variables $\left\{a_{n}\right\}$ with the covariance

$$
\begin{equation*}
\int \mathrm{d} v_{0} \bar{a}_{n} a_{m}=\delta_{n m} \frac{(2 k+m-1)!}{m!(2 k-1)!} \Rightarrow \delta_{n m} c_{k}(n)^{-1} \tag{2.3}
\end{equation*}
$$

$(k>0)$ defining the Gaussian measure ν_{0}. We can write ν_{0} as a product measure,

$$
\begin{equation*}
\mathrm{d} \nu_{0}(\phi)=\prod_{n} \mathrm{~d} a_{n} \exp \left(-c_{k}(n)\left|a_{n}\right|^{2}\right) \tag{2.4}
\end{equation*}
$$

A formal expression for v_{0} can be written in the form

$$
\begin{equation*}
\prod_{p} \mathrm{~d} \phi(p) \exp \left(-\int \mathrm{d} \mu_{k}(p)|\phi(p)|^{2}\right) \tag{2.5}
\end{equation*}
$$

where p could denote either a point of S^{1} or of \mathbb{D} and the measure μ_{k} is determined by c_{k} in equation (2.4). The two-point correlation function resulting from the covariance (2.3) is

$$
\begin{equation*}
\int \mathrm{d} v_{0}(\phi) \overline{\partial \phi(z)} \partial \phi\left(z^{\prime}\right)=\left(1-\bar{z} z^{\prime}\right)^{-2 k} \tag{2.6}
\end{equation*}
$$

By means of the Cayley transformation we can map the disk \mathbb{D} into the upper half-
 After this transformation the field ϕ for $k=1$ is the positive-energy part of the time-zero massless canonical free field.

3. Reproducing kernels and group representations

In the representation theory of groups it is sometimes useful to discuss positive definite kernels instead of the Hilbert space of the representation (see [16]). Let us recall some defnitions [17].

Let Q be a set. We say that a function K on $Q \times Q$ is positive definite if for arbitrary $\lambda \in \mathbb{C}$

$$
\begin{equation*}
\sum \lambda_{i} \overline{\lambda_{j}} K\left(x_{i}, x_{j}\right) \geqslant 0 \tag{3.1}
\end{equation*}
$$

There exists a standard method in algebra to construct a linear space \mathscr{L} from any set $Q . \mathscr{L}$ consists of 'formal linear combinations of elements of Q ' (in [17] a less abstract construction is given). So we can define a map

$$
\begin{equation*}
v: Q \rightarrow \mathscr{L} \tag{3.2}
\end{equation*}
$$

Let us define a subset

$$
\begin{equation*}
\mathcal{N}=\{x \in Q: K(x, x)=0\} \tag{3.3}
\end{equation*}
$$

and the corresponding linear subspace $\mathcal{N}_{\mathscr{y}} \subset \mathscr{L}$. Then, the positive definite kernel (equation (3.1)) supplies $\mathscr{L} / \mathcal{N}_{2 p}$ with the scalar product

$$
\begin{equation*}
(v(x), v(y))=K(x, y) \tag{3.4}
\end{equation*}
$$

Now, $\mathscr{L} / \mathcal{N}_{\mathscr{L}}$ equipped with the scaar product (3.4) is the Hilbert space \mathscr{H}.
Next, let Q be a measure space, i.e. a σ-algebra Ω of measureable sets is chosen and there exists a (non-negative) measure v on Ω. We say that K is a reproducing kernel if

$$
\begin{equation*}
\int \mathrm{d} v(x) K(y, x) K(x, z)=K(y, z) \tag{3.5}
\end{equation*}
$$

Consider an example. Let $\mathscr{F}\left(M, \mathbb{C}^{n}\right)$ be the space of functions defined on M with values in \mathbb{C}^{μ} and μ a non-negative measure on M. Then, the map (3.2) is just an identity. We define a positive definite kernel on $\mathscr{F}\left(M, \mathbb{C}^{n}\right)$ by

$$
\begin{equation*}
\mathscr{E}_{0}^{\mathfrak{\xi}}(u, f)=\exp \left[\sum_{r=1}^{n} \int \mathrm{~d} \mu(p) \overline{\partial u^{r}(p)} \partial f^{r}(p)\right] \tag{3.6}
\end{equation*}
$$

$\mathscr{H}_{0}^{\mathscr{F}}$ is a reproducing kernel. Equation (3.6) is in fact a rigorous definition of the Gaussian measure ν_{0} (equation (2.4)) (when $M=\mathbb{D}$ and $\mu=\mu_{k}$).

We can construct new positive definite kernels from a known one. Let K be a positive definite kernel on M and

$$
\sigma: Q \rightarrow M
$$

an invertible map. Denoting $x_{1}=\sigma^{-1}\left(m_{1}\right)$ and $x_{2}=\sigma^{-1}\left(m_{2}\right)$ we define a kernel K_{σ} on Q,

$$
\begin{equation*}
K_{\sigma}\left(x_{1}, x_{2}\right) \equiv K\left(\sigma\left(x_{1}\right), \dot{\sigma}\left(x_{2}\right)\right) \tag{3.7}
\end{equation*}
$$

It is an easy check that K_{σ} is positive definite:

$$
\sum \lambda_{k} \bar{\lambda}_{\dot{r}} K_{o}\left(x_{k}, x_{r}\right)=\sum \lambda_{k} \bar{\lambda}_{r} K\left(\dot{\sigma}\left(x_{k}\right), \sigma\left(x_{r}\right)\right)=\sum \lambda_{k} \bar{\lambda}_{r} K\left(\dot{m}_{k}, \dot{m}_{r}\right) \geqslant 0
$$

If K is the reproducing kernel with the reproducing measure ν in equation (3.5) then K_{σ} is the reproducing kernel with the reproducing measure $\nu_{\sigma}=\nu \circ \sigma$, where we define

$$
\begin{equation*}
v_{\sigma}(A)=v(\sigma(A)) \tag{3.8}
\end{equation*}
$$

for any set A being a σ^{-1}-image of a measureable set. In fact, we have

$$
\begin{aligned}
& \int \mathrm{d} v_{\sigma}(x) K_{\sigma}\left(x_{1}, x\right) K_{\sigma}\left(x, x_{2}\right) \\
&=\int \mathrm{d} v(\sigma(x)) K\left(\sigma\left(x_{1}\right), \sigma(x)\right) K\left(\sigma(x), \sigma\left(x_{2}\right)\right) \\
&=\int \mathrm{d} v(m) K\left(\sigma\left(x_{1}\right), m\right) K\left(m, \sigma\left(x_{2}\right)\right)=K\left(\sigma\left(x_{1}\right), \sigma\left(x_{2}\right)\right)=K_{\sigma}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

We assume that a transformation group G is defined on Q (we denote its action by $x g$). We say that the kernel K is projectively invariant if for each $g \in G$

$$
\begin{equation*}
K(x g, y g)=\overline{\Lambda(g, x)} \Lambda(g, y) K(x, y) . \tag{3.9}
\end{equation*}
$$

If the kernel is projectively invariant then there exists in \mathscr{H} a unitary (in general projective) representation $U(G)$ of the group G defined by

$$
\begin{equation*}
U_{g} v(x)=\Lambda(g, x)^{-1} v(x g) . \tag{3.10}
\end{equation*}
$$

Note that $U_{g_{1}}=U_{8_{2}}$ if $v\left(g_{1}\right)-v\left(g_{2}\right) \in \mathcal{N}_{\varphi}$ and $\Lambda\left(g_{1}, x\right)=\Lambda\left(g_{2}, x\right)$.
It can be shown (and calculated from Λ) that there exists a two-cocycle $\gamma(|\gamma|=1)$ such that

$$
\begin{equation*}
U\left(g_{1}\right) U\left(g_{2}\right)=\gamma\left(g_{1}, g_{2}\right) U\left(g_{1} g_{2}\right) . \tag{3.11}
\end{equation*}
$$

The cocycle condition resulting from associativity reads

$$
\begin{equation*}
\gamma\left(g_{1}, g_{2}\right) \gamma\left(g_{1} g_{2}, g_{3}\right)=\gamma\left(g_{1}, g_{2} g_{3}\right) \gamma\left(g_{2}, g_{3}\right) \tag{3.12}
\end{equation*}
$$

4. Fields with values in a group

We now apply the method of construction of reproducing kernels and reproducing measures expressed by equations (3.7) and (3.8). We begin with the reproducing kernel $\mathscr{K}_{0}^{\mathscr{F}}$ (equation (3.6) with $M=\mathbb{D}$). Let us consider a complex vector bundle $V\left(\mathbb{D}, V_{n}\right)$ over \mathbb{D}. Let $\mathscr{H}\left(\mathbb{D}, V_{n}\right)$ be the vector space of local holomorphic sections of $V\left(\mathbb{D}, V_{n}\right)$. If $\phi_{i} \in \mathscr{H}\left(\mathbb{D}, V_{n}\right)$, then we define

$$
\begin{equation*}
\mathscr{K}_{0}^{\mathbb{F}}\left(\phi_{1}, \phi_{2}\right)=\exp \left[\frac{1}{\pi} \sum_{a=1}^{n} \int_{D} \mathrm{~d}^{2} z \overline{\partial \phi_{1}^{a}(z)} \partial \phi_{2}^{a}(z)\right] . \tag{4.1}
\end{equation*}
$$

The reproducing measure is defined rigorously by the reproducing property (3.5) and formally by

$$
\begin{equation*}
\mathrm{d} v_{0}(\phi) \sim \prod_{z} \mathrm{~d} \phi^{a}(z) \exp \left[-\frac{1}{\pi} \int_{\mathrm{D}} \mathrm{~d}^{2} z \overline{\partial \phi^{a}(z)} \partial \phi^{a}(z)\right] . \tag{4.2}
\end{equation*}
$$

This is the Gaussian measure of independent free fields ϕ^{a} with the two-point function defined in equation (2.6) with $k=1$.

According to equation (3.7) if f is a (locally) invertible map of a set \mathscr{T} (at this stage we have some freedom in the choice of f and \mathscr{T})

$$
\begin{equation*}
f: \mathscr{T} \rightarrow \mathscr{H}\left(\mathbb{D}, V_{n}\right) \tag{4.3}
\end{equation*}
$$

expressed in coordinates as

$$
\begin{equation*}
f^{a}(\psi)(w)=\kappa^{-t / 2} \partial \phi^{a}(w) \tag{4.4}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathscr{K}_{f}\left(\psi_{1}, \psi_{2}\right)=\exp \left[\frac{\kappa}{\pi} \sum_{a=1}^{n} \int_{\mathbb{D}} \mathrm{d}^{2} z \overline{f^{a}\left(\psi_{1}\right)(z)} f^{a}\left(\psi_{2}\right)(z)\right] \tag{4.5}
\end{equation*}
$$

is the positive definite reproducing kernel on \mathscr{T}.
Let $V_{n}=T_{1} G=4$ now be the Lie algebra of a compact semi-simple Lie group G. Let $G^{\text {C }}$ be its complexification and $\mathscr{A}^{\complement}$ the complexification of \mathscr{A}. Let $\mathscr{G}\left(\mathbb{D}, G^{\text {C }}\right.$) (the set of maps from \mathbb{D} into $G^{\mathbb{C}}$) be the set \mathscr{T} in equation (4.3), we consider the map

$$
\begin{equation*}
f: \mathscr{G}\left(\mathbb{D}, G^{\mathbb{C}}\right) \rightarrow \mathscr{H}\left(\mathbb{D}, \mathscr{A}^{\mathbb{C}}\right) \tag{4.6}
\end{equation*}
$$

defined by

$$
\begin{equation*}
f(g)=g^{-1} \partial g \tag{4.7}
\end{equation*}
$$

The inverse $\operatorname{map} f^{-1}$ is defined as the solution of the equation (an ordinary differential equation in the complex domain \mathbb{D})

$$
\begin{equation*}
g^{-1} \partial g=\frac{1}{\sqrt{\kappa}} \partial \phi \tag{4.8}
\end{equation*}
$$

mapping 0 of $\mathscr{A}^{\mathbb{C}}$ into the unit element of $G^{\mathbb{C}}$ (here $\phi \in \mathscr{H}\left(\mathbb{D}, \mathscr{A}^{\mathrm{C}}\right)$ are n independent holomorphic free fields (2.6) corresponding to $k=1$).

From equation (4.5) we get a positive definite kernel on $\varphi\left(\mathbb{D}, G^{\complement}\right)$,

$$
\begin{equation*}
\mathscr{K}^{\varphi_{s}}\left(g_{1}, g_{2}\right)=\exp \left[\frac{\kappa}{\pi} \int_{\mathbf{D}} \mathrm{d}^{2} z\left\langle\left(g_{1}^{-1} \partial g_{1}\right)^{+}, g_{2}^{-1} \partial g_{2}\right\rangle\right] \tag{4.9}
\end{equation*}
$$

where \langle,$\rangle is the Killing form on \mathscr{A}$ (positive definite).
The kernel $\mathscr{K}^{\mathscr{G}}$ is projectively invariant under the group $\mathscr{G}(\mathbb{D}, G)$ of real analytic maps $\mathbb{D} \rightarrow G$. For the multiplier Λ (equation (3.9)) we get
$\Lambda(h, g)=\exp \left[\frac{\kappa}{\pi} \int_{\mathbb{Q}} \mathrm{d}^{2} z\left(\frac{1}{2}\left\langle\left(h^{-1} \partial h\right)^{+}, h^{-1} \partial h\right\rangle+\left\langle\left(\partial h h^{-1}\right)^{+}, g^{-1} \partial g\right\rangle\right)\right]$
where $h \in \mathscr{G}(\mathbb{D}, G)$ and $g \in \mathscr{G}\left(\mathbb{D}, G^{\mathbb{C}}\right)$.
Clearly, $h \in \mathscr{G}(\mathbb{D}, G)$ does not map $\mathscr{G}\left(\mathbb{D}, G^{\mathbb{C}}\right)$ onto itself. The formalism of section 3 still applies. We need to extend the definition of the kernel $\Re^{\text {cs }}$ (see equation (4.9)) to the orbit of $\mathscr{G}\left(\mathbb{D}, G^{\mathscr{C}}\right)$ under the action of $\mathscr{G}(\mathbb{D}, G)$ denoted by $\mathscr{G}_{C}(\mathbb{D}, G)$. The kernel (4.9) remains positively definite on $\mathscr{G}_{\mathbb{C}}(\mathbb{D}, G)$. Then, equation (3.10) defines a unitary projective representation of the group $\mathscr{G}(\mathbb{D}, G)$. A simple calculation gives the formula for the 2-cocycle γ (equation (3.11)),
$\gamma\left(h_{1}, h_{2}\right)=\exp \left[\frac{\kappa}{2 \pi} \int_{\mathbf{D}} \mathrm{d}^{2} z\left(\left\langle\left(h_{1}^{-1} \partial h_{1}\right)^{+}, \partial h_{2} h_{2}^{-1}\right\rangle-\left\langle\left(\partial h_{2} h_{2}^{-1}\right)^{+}, h_{1}^{-1} \partial h_{1}\right\rangle\right)\right]$.
We shall show that formula (3.10) defined by the kernel (4.9) defines a representation of the central extension of the loop algebra. In order to see this let us consider infinitesimal transformations $h=\exp (\varepsilon \mathfrak{h})$,

$$
\begin{equation*}
\partial h h^{-1}=\varepsilon \partial \mathfrak{h} \tag{4.12}
\end{equation*}
$$

Hence, neglecting higher orders in ε,

$$
\Lambda(h, g)=\exp \left[\frac{\kappa \varepsilon}{\pi} \int_{\mathbb{D}} \mathrm{d}^{2} z \bar{\partial}\left(\mathfrak{h}^{+} g^{-3} \partial g\right)\right]
$$

because g is a holomorphic function, i.e. $\Lambda(h, g)$ depends only on the values of h and g on the boundary $\partial \mathbb{D}=S^{1}$. If $\mathfrak{G}=0$ on $\partial \mathbb{D}$ then $\Lambda(h, g)=1$ (at least for infinitesimal transformations h). Moreover, if $\mathfrak{h}=0$ on $\partial \mathbb{D}$ then $v(g h)-v(g) \in \mathcal{N}_{\varphi}$. In order to prove this let us note that

$$
\begin{equation*}
(g h)^{-1} \partial g h \approx g^{-1} \partial g+\varepsilon\left[g^{-1} \partial g, \mathfrak{h}\right]+\varepsilon \partial h . \tag{4.13}
\end{equation*}
$$

Inserting equation (4.13) into equation (4.9) we can see that because of holomorphicity of g only the value of \mathfrak{h} on the boundary of \mathbb{D} contributes to $\mathscr{K}^{\mathscr{G}}$. Hence, if $\mathfrak{G}=0$ on $\partial \mathbb{D}$ then $v(g h)-v(g) \in \mathcal{N}_{\mathscr{2}}$ (see the definition below equation (3.3)). As a consequence, if $h=1$ on $\partial \mathbb{D}$ then from equation (3.10) $U_{h}=1$ (at least for infinitesimal transformations). Now, the loop group $\mathscr{G}\left(S^{1}, G\right)$ has a realization (see [10]) as a quotient group $\mathscr{G}(\mathbb{D}, G) / \mathscr{G}_{1}(\mathbb{D}, G)$, where \mathscr{G}_{1} denotes the set of maps, which are 1 on the boundary $\partial \mathbb{D}$. We have just shown that the subgroup $\mathscr{G}_{1}(\mathbb{D}, G)$ has a trivial representation of its algebra in the Hilbert space determined by the kernel (4.9). Hence, formula (3.10) defines a representation of the central extension of the loop algebra determined by the 2 -cocycle γ (equation (4.11)). The 2 -cocycle γ is related to the wzw action. When we extend the field and the integration domain to the whole compactified plane \mathbb{C}, then this extended 2 -cocycle $\gamma_{\mathcal{C}}$ can be expressed as
$\gamma_{\mathbf{c}}\left(h_{1}, h_{2}\right)=\exp \left[W\left(h_{1} h_{2}\right)-W\left(h_{1}\right)-W\left(h_{2}\right)-\overline{W\left(h_{1} h_{2}\right)}+\overline{W\left(h_{1}\right)}+\overline{W\left(h_{2}\right)}\right]$
where W is the wzw action [4, 19]. The equality of equations (4.11) and (4.14) follows from the Polyakov-Wiegmann formula [19] fpr $W\left(h_{1} h_{2}\right)$. The imaginary part of $W(h)$ in equation (4.14) is equal to

$$
\omega=\frac{\kappa}{\pi} \int_{B}\left(h^{-1} \mathrm{~d} h\right)^{3}
$$

where h is a smooth extension of h to a ball B with \mathbb{C} as its boundary. It is known that ω is an integer if $\kappa=k / 12^{\delta^{2}}$, where k is an integer and δ is the length of the maximal root of $\mathcal{A A}$. Only a discrete set of values for x is allowed. This follows from the requirement of γ to be single valued. The 2 -cocycle γ (4.11) as a central extension of the loop group has been discussed in [10] and [18].

Consider now the reproducing measure ν. According to formula (3.8) this measure is equal to $v=v_{f}=v_{0} \circ f$, where the map f is defined in equation (4.7) and ν_{0} is the Gaussian measure (2.6). Formula (3.8) defining ν_{f} as a transformation of ν_{0} is a mathematically precise definition of the reproducing measure v. However, in order to relate it to the Lagrangian formalism we derive its formal expression. We have from equations (4.2) and (4.7)

$$
\begin{align*}
\mathrm{d} v_{f}(\psi)=\mathrm{d} v_{0}(f(\psi)) & =\mathrm{d} f^{a}(\psi) \exp \left[-\frac{1}{\pi} \int \overline{f^{a}(\psi)} f^{a}(\psi)\right] \\
& =\mathrm{d} \psi^{\alpha} \operatorname{det}\left|\frac{\partial f^{c}}{\partial \psi^{\alpha}}\right| \exp \left[-\frac{\kappa}{\pi} \int \mathrm{d}^{2} z\left\langle\left(g^{-1} \partial g\right)^{+}, g^{-1} \partial g\right\rangle\right] \tag{4.15}
\end{align*}
$$

The Maurer-Cartan form can be expanded into a basis $\left\{\tau_{a}\right\}$ of \mathscr{A}

$$
\begin{equation*}
g^{-1} \partial g=M_{a}^{a} \tau_{a} \partial \psi^{a} \tag{4.16}
\end{equation*}
$$

From equation (4.8) we get for the Jacobian in equation (4.15)

$$
\begin{equation*}
J_{\beta}^{a}=\frac{\delta f^{a}(z)}{\delta \psi^{\beta}\left(z^{\prime}\right)}=M_{\beta}^{a}(\psi) \partial \delta\left(z-z^{\prime}\right)+\partial_{\beta} M_{\alpha}^{a}(\psi) \partial \psi^{a}(z) \delta\left(z-z^{\prime}\right) . \tag{4.17}
\end{equation*}
$$

Let

$$
L_{\alpha}^{a} M_{\beta}^{a}=\delta_{\beta}^{a}
$$

be the inverse of M. We transform the operator J (equation (4.17)) into an operator $\mathcal{F}: T G \rightarrow T G$,

$$
\begin{equation*}
\mathscr{F}_{\alpha}^{\sigma}=J_{a}^{\alpha} L_{a}^{\sigma}=\delta_{a}^{\sigma} \partial-T_{\alpha \beta}^{\sigma}(\psi) \partial \psi^{\beta} \tag{4.18}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{a \beta}^{\sigma}=M_{\beta}^{a} \partial_{\alpha} L_{a}^{\sigma}-M_{\alpha}^{a} \partial_{\beta} L_{a}^{\sigma}=f_{a b}^{c} L_{c}^{\sigma} M_{\alpha}^{a} M_{\beta}^{b} \tag{4.19}
\end{equation*}
$$

where in the last step in equation (4.19) the fact that $\left\{L^{a}\right\}$ form the basis of the Lie algebra (with structure constants $f_{a b}^{c}$) of left invariant vector fields has been used. The transformation $J \rightarrow \mathscr{y}$ has the Jacobian (det $L)^{-1}$. We have

$$
\mathrm{d} \psi(\operatorname{det} L)^{-1}=\operatorname{dg}(\psi)
$$

where $\mathrm{d} g$ is the Haar measure on G. Let $\eta_{a b}=\left\langle\tau_{a}, \tau_{b}\right\rangle$ be the Killing tensor. Define

$$
\begin{equation*}
h_{a \bar{\delta}}=M_{\alpha}^{a} \overline{M_{\sigma}^{b}} \eta_{a b} . \tag{4.20}
\end{equation*}
$$

Then, the measure v_{f} (equation (4.15)) can be expressed in the form

$$
\begin{align*}
\mathrm{d} v_{f}(\psi) & =\mathrm{d} g(\psi) \operatorname{det}[\mathscr{g}] \exp \left[-\frac{\kappa}{\pi} \int \mathrm{d}^{2} z h_{a \bar{\sigma}}(\psi) \partial \psi^{\alpha} \overline{\partial \psi^{c}}\right] \\
& =\mathrm{dg}(\psi) \mathrm{d} \chi \exp \left[-\int \mathscr{L}(\psi, \chi)\right] \tag{4.21}
\end{align*}
$$

where χ is a Dirac (anticommuting) spinor field and

$$
\begin{equation*}
\mathscr{L}(\psi, \chi)=h_{\alpha \sigma}(\psi) \partial \psi^{\alpha} \overline{\partial \psi^{\sigma}}+\bar{\chi}_{a} \frac{1}{2}\left(1-\gamma_{5}\right) \gamma^{\mu}\left(\delta_{\beta}^{\alpha} \partial_{\mu}-T_{\beta_{\rho}}^{\alpha} \partial_{\mu} \psi^{\rho}\right) \chi^{\beta} . \tag{4.22}
\end{equation*}
$$

The determinant in equation (4.21) can be computed [20,21]. It is equal to its holomorphic anomaly,

$$
\begin{equation*}
\operatorname{det}[\mathscr{F}]=\exp \left[-\frac{1}{4 \pi} \int T_{\beta \sigma}^{\alpha}(\psi) \overline{T_{\alpha \rho}^{\beta}}(\psi) \partial \psi^{\sigma} \overline{\partial \psi^{\rho}}\right] . \tag{4.23}
\end{equation*}
$$

The effective action resulting from equations (4.21) and (4.23) leads to non-compact wzw Lagrangians discussed in [22-25], but now with holomorphic σ-fields. The bosonic part of the Lagrangian (4.22) is equal to the area of the surface in G^{\complement} resulting as the f-image (4.7) of \mathbb{D}. Models of this type could have applications in string theory.

The group-theoretical content of the holomorphic field theory can be reduced to that of the reproducing kernel (4.9). The Hilbert space \mathscr{H} defined by equation (3.4) has a realization as $L^{2}\left(\mathrm{~d} v_{f}\right)$. Let us call the measure v_{f} quasi-invariant under right
group translations $h \in \mathscr{G}(\mathbb{D}, G)$ if for any $F \in L^{2}\left(\mathrm{~d} v_{f}\right)$

$$
\begin{equation*}
\int d v_{f}(g) F\left(g h^{-1}\right)=\int \mathrm{d} v_{f}(g)|\Lambda(g, h)|^{-2} F(g) \tag{4.24}
\end{equation*}
$$

Then, we can prove the formula (4.24) using the reproducing property (3.5) in the form

$$
\begin{equation*}
\int \mathrm{d} v_{f}(g h) \mathscr{K}^{\varphi_{g}}\left(g_{1} h, g h\right) \mathscr{K}^{\varphi}\left(g h, g_{2} h\right)=\mathscr{K}^{\mathscr{G}}\left(g_{1} h, g_{2} h\right) \tag{4.25}
\end{equation*}
$$

Applying the transformation property (3.9) we see that equation (4.24) holds true when applied to functionals of the form of the exponentials (4.9) (we expect that such functionals form a dense set in $L^{2}\left(\mathrm{~d} v_{f}\right)$).

From equations (4.24) and (3.10) it follows that the representation of $\mathscr{G}(\mathbb{D}, G)$ defined in $L^{2}\left(\mathrm{~d} v_{f}\right)$ by

$$
\begin{equation*}
\left(U_{h} F\right)(g)=\Lambda(g, h)^{-1} F(g h) \tag{4.26}
\end{equation*}
$$

(where $h \in \mathscr{G}(\mathbb{D}, G)$) on functionals F of holomorphic G^{c}-valued fields $\left(g \in \mathscr{G}\left(\mathbb{D}, G^{\mathrm{C}}\right)\right.$) is unitary and equivalent to the representation (3.10) derived from the positive definite kernel \mathscr{K}^{G} (equation (4.9)).

The pointwise multiplication $g h$ in equation (4.26) when expressed in terms of ϕ (equation (4.8)) takes the form

$$
\begin{equation*}
\partial \phi \rightarrow h^{-1} \partial \phi h+h^{-1} \partial h . \tag{4.27}
\end{equation*}
$$

Formula (4.27) relates the representation (4.26) to the central extension of the loop algebra suggested at the end of the paper of Gelfand et al [8] (although these authors do not consider holomorphic fields at all).

5. A soluble model

Equations (4.8) can easily be solved when G is a solvable group. We are interested in this section in conformal invariance of the solution. For a discussion of the conformal invariance it is convenient to map the disk \mathbb{D} onto the upper half-plane \mathbb{H} by means of the Cayley transformation

$$
\begin{equation*}
z=(1+\mathrm{i} w)(1-\mathrm{i} w)^{-1} . \tag{5.1}
\end{equation*}
$$

The correlation function (2.6) transforms into

$$
\begin{equation*}
\int \mathrm{d} v_{0}(\phi) \overline{\partial \phi(w)} \partial \phi\left(w^{\prime}\right)=\frac{1}{4}\left[-\frac{\mathrm{i}}{2}\left(w^{\prime}-\bar{w}\right)\right]^{-2 k} \tag{5.2}
\end{equation*}
$$

where $w, w^{\prime} \in \mathbb{H}$. We consider here the simplest case of equation (4.8), a solvable 2×2 unimodular matrix. Then,

$$
g=N A
$$

where

$$
N=\left[\begin{array}{ll}
1 & 0 \\
Z & 1
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{cc}
\mathrm{e}^{\psi} & 0 \\
0 & \mathrm{e}^{-\psi}
\end{array}\right] .
$$

ϕ is a matrix,

$$
\phi=\left[\begin{array}{cc}
\phi_{0} & 0 \\
\phi_{1} & -\phi_{0}
\end{array}\right]
$$

whose entries are independent free fields with the two-point function defined in equation (5.2) with $k=1$. Equations (48) read

$$
\begin{align*}
& \partial \psi=\sqrt{\sigma} \partial \phi_{0} \\
& \partial Z=\sqrt{\sigma} \exp (-2 \psi) \partial \phi_{1} \tag{5.3}
\end{align*}
$$

where we denoted $\sigma=1 / \kappa$. The general solution of equations (5.3) is

$$
\begin{equation*}
\psi(w)=\sqrt{\sigma} \int_{a}^{w} \partial \phi_{0}(z) \mathrm{d} z \quad Z(w)=\sqrt{\sigma} \int_{\beta}^{w} \exp [-2 \psi(\xi)] \partial \phi_{\mathrm{l}}(\zeta) \mathrm{d} \zeta \tag{5.4}
\end{equation*}
$$

It depends on the parameters α and β.
The measure v_{f} (equation (4.21)) after the calculation of the determinant (4.23) is $\mathrm{d} v=\mathrm{d} Z \mathrm{~d} \psi \exp \left[-\frac{\kappa+1}{\pi} \int_{H} \mathrm{~d}^{2} w \partial \psi \overline{\partial \psi}-\frac{\kappa}{\pi} \int_{H} \mathrm{~d}^{2} w \exp (2 \psi+\overline{2 \psi}) \partial Z \overline{\partial Z}\right]$
which is a holomorphic version of a measure discussed in [22]. We consider the field

$$
\begin{equation*}
\Phi_{a}(w)=\exp (\psi(w)+\bar{\psi}(w)) Z(w) \tag{5.5}
\end{equation*}
$$

as a candidate for a conformal covariant field.
Let us first compute the two-point function of ψ. From equation (5.2) ($k=1$) we get
$\Omega_{\alpha}\left(w_{1}, w_{2}\right) \equiv\left\langle\overline{\psi\left(w_{1}\right)} \psi\left(w_{2}\right)\right\rangle=\sigma\left(-\ln \left(w_{2}-\overline{w_{1}}\right)+\ln \left(\alpha-\overline{w_{1}}\right)+\ln \left(w_{2}-\bar{\alpha}\right)-\ln (\alpha-\bar{\alpha})\right)$.
The two-point function Ω_{α} is conformally invariant with a scale dimension equal to zero if α undergoes a conformal transformation together with w. In such a case the parameter α in Φ_{α} also undergoes a conformal transformation. Another way out of this well known conformal anomaly [26] is to restrict the field ψ to test functions f such that $\int \mathrm{d}^{2} w f(w, \bar{w})=0$. In such a case only the first term on the right-hand side of equation (5.6) is relevant. Let us introduce

$$
\begin{equation*}
\Omega\left(w_{1}, w_{2}\right) \equiv\left\langle\overline{\Psi\left(w_{1}\right)} \Psi\left(w_{2}\right)\right\rangle=-\sigma \ln \left(w_{2}-\bar{w}_{1}\right) \tag{5.7}
\end{equation*}
$$

as a definition of $\Psi . \Psi$ can be expressed by ψ as $\Psi(w)=\psi(w)+\mathrm{i} \psi(\alpha)$. We express ψ in formula (5.4) by Ψ, and dividing by $\exp [\mathrm{i} \psi(\alpha)-\mathrm{i} \bar{\psi}(\alpha)]$ we modify definition (5.5),

$$
\begin{equation*}
\Phi(w)=\exp [-\overline{\langle\Psi(w)} \Psi(w)\rangle] \exp [\Psi(w)+\overline{\Psi(w)}] \int_{\beta}^{w} \exp [-2 \Psi(\zeta)] \partial \phi_{1}(\zeta) \mathrm{d} \zeta \tag{5.8}
\end{equation*}
$$

The two-point function of Φ is

$$
\begin{align*}
\left\langle\overline{\Phi\left(w_{1}\right)} \Phi\left(w_{2}\right)\right\rangle & =-\sigma \int_{\bar{\beta}}^{\overline{w_{1}}} \int_{\beta}^{w_{2}} \mathrm{~d} \zeta_{2} \mathrm{~d} \xi_{1}\left(\zeta_{2}-\bar{\zeta}_{1}\right)^{-2} \\
& \left.\left\langle\exp \left[\overline{\Psi\left(w_{1}\right)}+\Psi\left(w_{1}\right)-2 \overline{\Psi\left(\xi_{1}\right)}+\overline{\Psi\left(w_{2}\right)}+\Psi\left(w_{2}\right)-2 \Psi\left(\zeta_{2}\right)\right)\right]\right\rangle \tag{5.9}
\end{align*}
$$

The last expectation value is equal to

$$
\begin{align*}
\langle\ldots\rangle=\exp [- & 2 \Omega\left(\zeta_{1}, w_{1}\right)+\Omega\left(w_{2}, w_{1}\right)+\Omega\left(w_{1}, w_{2}\right)-2 \Omega\left(\zeta_{1}, w_{2}\right) \\
& \left.-2 \Omega\left(w_{1}, \zeta_{2}\right)+4 \Omega\left(\zeta_{1}, \zeta_{2}\right)-2 \Omega\left(w_{2}, \zeta_{2}\right)\right] \tag{5.10}
\end{align*}
$$

We can see from equations (5.9) and (5.10) that if we formally let $\beta \rightarrow \infty$, then the correlation functions are scale covariant with the scaling dimension $d=-\sigma$ (the negative sign means that the two-point function grows with the distance as $\left|w_{1}-w_{2}\right|^{\sigma}$). If $\beta=\infty$, then the integral (5.9) is divergent. We could define the integral (5.9) by an analytic continuation in σ. If σ is negative then the integral (5.9) is convergent even if $\beta=\infty$. A simple Gaussian functional integral gives a formula for n-point correlation functions. If $\beta=\infty$ the correlation functions are formally scale covariant with the scaling dimension $d=-\sigma$.

The correlation functions which we get this way resemble the Feigin-Fuchs representation of conformal field theory [27]. They appear to be related to the correlation functions of non-compact wzw models discussed in [22-25] (if we express the plane integrals there by line integrals according to [28]). The negative dimension may be a result of non-compactness of the solvable model.

Acknowledgments

The author thanks the referees for remarks which contributed to an essential improvement of this paper. He acknowledges support by KBN grant No 224219203.

References

[1] Kac V G 1983 Infinite Dimensional Lie Algebras (Birkhauser)
[2] Frenkel I B 1986 Proc. Int. Congress of Mathematicians (Berkeley) (American Mathematical Society)
[3] Pressley A and Segal G 1986 Loop Groups (Oxford: Oxford University Press)
[4] Witten E 1984 Commun. Math. Phys. 92455
[5] Sugawara H 1968 Phys. Rev. 1701659
[6] Goddard P and Olive D 1985 Nucl. Phys. B 257[FS14] 226
[7] Gelfand I M, Graev M I and Versik A M 1977 Compositio Math. 35299
[8] Gelfand I M, Graev M and Vershik A M 1981 Compositio Math 42217
[9] Albeverio S and Hoegh-Krohn R 1978 Compositio Math 3637
[10] Mickelsson J 1987 Commun. Math. Phys. 110 173; 1987 Commun. Math. Phys. 112653
[11] Wakimoto 1986 Commun. Math. Phys._ 104605
[12] Haba Z 1991 J. Math. Phys. 3219
[13] Felder G 1989 Nucl. Phys. B 317215
[14] Bouwknegt P, McCarthy J and Pilch K 1990 Progr. Theor. Phys. Suppl. 10267
[15] Terras A 1985 Harmonic Analysis on Symmetric Spaces and Applications (Berlin: Springer)
[16] Maurin K 1968 General Eigenfunction Expansions and Unitary Representations of Topological Groups (Warszawa)
[17] Parthasarathy K R and Schmidt K 1972 Positive Definite Kernels, Continuous Tensor Products and Central Limit Theorems of Probability Theory (Lecture Notes in Mathematics 272)
[18] Felder G, Gawedzki K and Kupiainen A 1988 Nucl. Phys. B 299355
[19] Polyakov A M and Wiegmann P B 1983 Phys. Lett. 131B 121; 1984 Phys. Lett. 141B 223
[20] Quillen D 1985 Funct. Anal. Appl. (Russian) 1937
[21] Alvarez-Gaume L, Moore G and Vafa C 1986 Commun. Math. Phys. 1061
[22] Haba Z. 1989 Int. J. Mod. Phys. A 4267
[23] Haba Z 1991 Int. J. Mod. Phys. A 54241
[24] Gawedzki K and Kupiainen A 1989 Nucl. Phys. B 320625
[25] Gawedzki K 1989 Nucl. Phys. B 328733
[26] Swieca J A and Voelkel A H 1973 Commun. Math. Phys. 29319
[27] Dotsenko Vl S and Fateev F A 1984 Nucl. Phys. B 240 312; 1985 Nucl. Phys. B 251691
[28] Dotsenko VI S 1986 Preprint RIMS-559, Kyoto

